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Abstract—Indoor localization is important for many location-
based services. The fundamental challenge is the high deploy-
ment cost for device, infrastructure, and calibration. This paper
develops a blind calibration approach for received signal strength
(RSS)-based localization. The essential idea is to employ a device
that visits each region exactly once in an indoor area to complete
a blind data collection process without recording the route,
locations, and timestamps. Thus, the key challenge is to cluster
the blind training data into groups and extract the key features
to identify the location regions. Classical clustering algorithms
fail to work as the data naturally appears as non-clustered due
to mutipaths and noise. In this paper, an integrated segmentation
and subspace clustering method is developed to exploit both
the sequential data structure from the blind data collection
process and the signal subspace structure due to the segmented
propagation environments. Based on real measurements from an
office space, the proposed scheme reduces the region localization
error by roughly 50% from a weighted centroid localization
(WCL) baseline. In addition, the performance is also comparable
to k-nearest neighbor (KNN) and support vector machine (SVM)
that require labeled data for calibration.

I. INTRODUCTION

Many technologies have been developed for indoor local-
ization. However, most of them are expensive in hardware
or calibration effort required. On one hand, triangulation
approaches based on time-of-arrival (TOA), time difference of
arrival (TDOA), or angle of arrival (AoA) can achieve a sub-
meter-level localization accuracy [1]. However, some of these
methods may require complicated hardware, such as multiple
antenna systems for AoA-based localization, and some others
may need expensive infrastructure, such as access point (AP)
networks where high accuracy time synchronization is required
for TDOA localization [1]. In addition, these approaches
mostly require a line-of-sight (LOS) propagation condition,
which is challenging to meet in an indoor environment. On the
other hand, fingerprint-based approaches may provide meter-
level accuracy, and they do not require dedicated hardware or
LOS conditions. However, fingerprint-based methods require
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tedious laboring efforts on data collection and calibration for
constructing a fingerprint database [2], [3].

However, many applications are sensitive to hardware and
calibration cost, where accuracy is only a secondary consid-
eration. For example, there has been a strong demand for
hospitals and factories of tracking the locations of equipments
and visitors, where it is acceptable to localize the target up
to a small region. In an indoor exhibition, the organizer may
want to track the crowd of visitors and localize them up to a
certain region, where the targets are usually non-cooperative
in the sense that the APs may not be able to decode the signal
from a target except for extracting the received signal strength
(RSS) of the target. However, it is still challenging to conduct
RSS-based localization with limited calibration effort.

This paper aims at reducing the calibration effort while
providing a good localization performance for non-cooperative
targets. Specifically, it focuses on RSS-based indoor localiza-
tion using sensor networks with blind calibration. An existing
calibration-free approach is the weighted centroid localization
(WCL), which localizes the target by computing the RSS-
weighted average of the sensor locations [4]. A special case
is the max-RSS approach which takes the sensor location
that captures the highest RSS as the estimate of the target
location. However, these approaches are strongly affected by
signal blockage and the topology of the AP network. Other
approaches allow some sorts of calibration, but aim at reducing
the calibration effort as much as possible. For instance, the
authors in [2] proposed a Generative Adversarial Network
based scheme to complete the localization task with reduced
RSS measurements. The work [3] uses a small amount of
labeled data and a large amount of unlabeled data, and employs
Kriging interpolation to recover the label. Despite these efforts,
the remaining calibration effort is still substantial and possibly
not affordable in some application scenario.

In this paper, a blind calibration approach is developed
for indoor localization with coarse performance requirement.
First, the area of interest is divided into a number of regions
according to the layout and the sensor deployment. Then, a
mobile device follows an arbitrary route to visit each region
exactly once to complete the calibration process. Note that,
except for tracking the RSS of the device, the sensor network
is blind to the location of the device and the timestamps when
the device enters each region. As a result, this is a blind training



process, and only negligible laboring effort is required.
The main challenge is to learn the signal feature for each

region from the blind training process that collects the RSS
data without any location information. This is naturally cast
into a clustering and matching problem, where one needs
to first assign labels to the RSS data and then extract the
feature for each region. Conventional clustering approaches
include subspace clustering [5], K-means clustering [6], spec-
tral clustering [7] and Gaussian mixture model (GMM) [8].
However, these clustering methods fail to work for the RSS-
based localization, because the RSS data for each indoor
region has huge divergence due to the randomness caused by
signal obstruction and the multipath effect. As a result, the
RSS data appears as non-clustered, leading to large errors for
conventional clustering algorithms.

To overcome the above challenge, this paper develops an
integrated segmentation and subspace clustering method that
exploits both the sequential data structure from the proposed
data collection process and the signal subspace structure due to
the partition of the regions. With the location labels recovered
from the proposed clustering method, a region classifier is
built to localize the target to the regions. Intuitively, the
finer the regions, the better the localization performance, but
more sensors are required. Based on real measurements from
an office space, we demonstrate that the proposed scheme
reduces the region localization error by roughly 50% from
a WCL scheme. In addition, the proposed method achieves
comparable performance with the state-of-the-art supervised-
learning-based localization methods k-nearest neighbor (KNN)
and support vector machine (SVM) which require substantial
calibration effort to collect labeled RSS data.

II. SYSTEM MODEL

A. A Blind Calibration Model

Suppose that there are D sensors deployed in an indoor area.
The sensors, such as WiFi APs, are capable of measuring the
RSS of the signal emitted by a wireless device, although the
sensors may not be able to decode the signal of the device.
Consider partitioning the indoor area into K non-overlapping
regions. For example, a room or a semi-closed space separated
by large furniture can be naturally considered as a region, as
in the example shown in Fig. 1.

Intuitively, signals emitted from the same region is believed
to share some common feature due to the proximity of the
transmission. In addition, the common environment, including
walls and large furniture, may also shape specific features for
radio signals emitted from the region. Note that the region
partition method is not the focus of the paper. Instead, this
paper focuses on extracting the common feature of the RSS
measured by the sensor network of the radio signals emitted
from the same region.

Consider a blind calibration approach, where a mobile
device follows an arbitrary route to visit all the K regions
without repetition. Without loss of generality, assume that the
mobile device visits from region 1 to region K in sequence.
Meanwhile, the mobile repeatedly transmits radio signals.

Figure 1: Ten non-overlapping rooms and semi-closed spaces
(blue square) are separated by large furniture and walls in a
30× 16 m2 indoor layout with 21 sensors (red circle).
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Figure 2: The projection of the sample x on a two-dimensional
affine subspace in RD.

Note that the route and the location of the mobile, and
the sojourn time that the mobile spends in each region are
unknown by the sensor network. Instead, only the RSS of
the signal emitted by the mobile is recorded. Denote the RSS
measured by the sensor network at time slot n as xn ∈ RD.
Denote X = {x1,x2, ...,xN} as the set of data samples and
X = [x1,x2, . . . ,xN ]T ∈ RN×D as the data matrix. The
remaining part of the paper aims at extracting the common
feature for each region from the data matrix X for RSS-based
localization.

B. Affine Subspace

In a static environment, the RSS vector x due to the radio
signal emitted from a region k can be intuitively and approx-
imately perceived as a point in a two-dimensional manifold
embedded in RD, although this remains as an assumption to
be verified in practice. This is because the mobile has only
2 degrees of freedom to move around in the region, and for
any two locations i and j that are sufficiently close to each
other, the RSS vectors xi and xj are also close in RD. For
example, if the first sensor is installed in the first region, then
the first entry xn,1 in the vector xn = (xn,1, xn,2, . . . , xn,D)
is relatively larger than most of other entries xn,i for each data
sample xn measured in the first region.



We consider to use affine subspace to approximate the data
manifold as shown in Fig. 2. Let dk be the dimension of
the kth subspace for the kth region. Let Uk ∈ RD×dk be
a semi-unitary matrix, where the dk columns {uk,i}dki=1 are
orthogonal. In addition, denote bk ∈ RD as the translation
vector of the kth affine subspace. The RSS vector x that is
taken from the kth region is thus modeled as

x = Uky + bk + ε (1)

where y ∈ Rdk is a set of coefficients related to the specific
measurement location (unknown) for x, and ε is a random
component that captures the residual due to the affine subspace
approximation to the manifold and the signal fluctuation due
to the variation of the propagation environment. The random
component ε is treated as noise with zero mean.

Under the affine subspace model, the vectors
{{uk,i}dki=1,bk} serve as the common feature for the
RSS data taken from the kth region. Note that the subspace
bases Uk for different regions are not necessarily orthogonal,
because they depend on the locations of the sensor and the
layout of the environment.

Remark 1. (Default Choice of dk): As the user has 2 degrees
of freedom to move around in the area, the RSS vector x may
be modeled as a point on a two-dimensional hyper-surface S
embedded in a RD space. Therefore, for a small area, an affine
subspace with dimension dk= 2 or 3 can be locally a good
approximation of S. This is also verified by our numerical
results.

C. Integrated Segmentation and Subspace Clustering

As there is no location label for the data matrix X in the
blind calibration process, we propose to group the rows of X
into K clusters using a clustering algorithm. Two properties
from the blind calibration approach and the affine subspace
model can be exploited: First, the data samples {xi}Ni=1 belong
to each region k = 1, 2, . . . ,K in sequence. As result, a
clustering problem is essentially a segmentation problem that
determines the segment boundaries 1 < t1 < t2 < · · · <
tK−1 < N . Consequently, with the blind calibration approach,
we can reduce to K − 1 clustering variables tk, instead of
computing N variables to assign each sample xi to a cluster
in a conventional clustering approach.

Second, based on the affine subspace model, one can assign
measurement samples xi to affine subspace {Uk,bk}Kk=1

based on the distance between xi and the subspace, where
the squared-distance between a measurement vector x and an
affine subspace (U, b) is derived as

ε(x,U,b) = ||x− b−U(UTU)−1UT(x− b)||22 (2)

where || · ||2 denotes the l2-norm. The physical meaning of
(2) is illustrated in Fig. 2. The projection of x − b to the
affine subspace is x − b − Uy. Since the projection line is
perpendicular to the basis U, we have UT(x−b−Uy) = 0.
So, the coefficients y = (UTU)−1UT(x−b) can be obtained

by solving a least square problem. The projection vector Uy
can be written as U(UTU)−1UT(x − b), and the residual
vector can be written as x− b−U(UTU)−1UT(x− b).

The integrated segmentation and subspace clustering prob-
lem is formulated as follows,

minimize
{tk}K−1

k=1 ,{Uk,bk}Kk=1

K∑
k=1

tk∑
i=tk−1+1

ε(xi,Uk,bk) (3)

subject to 0 < t1 < t2 < .... < tK−1 < N

where ε(xi,Uk,bk) is the clustering residual of the ith sample
to the kth subspace, and {tk}K−1k=1 are the segmentation index
indices to be determined. For notation convenience, we set
t0 = 0, tK = N .

Remark 2. Under dk = 0, the proposed formulation degen-
erates to integrated segmentation and K-means clustering.
In addition, while the formulation (3) was discussed based
on the affine subspace model, the proposed framework can
be extended to integrating segmentation with other clustering
methods, such as GMM, mean shift clustering, and spectral
clustering. For instance, to formulate an integrated segmenta-
tion and GMM clustering, one may modify the objective in (3)
to maximize the likelihood that the ith sample belongs to the
kth cluster.

III. CLUSTERING ALGORITHM FOR SEQUENTIAL DATA

Observed that there are two blocks of variables in (3).
The variable {Uk,bk}Kk=1 is dependent on {tk}K−1k=1 , and
{tk}K−1k=1 is dependent on {Uk,bk}Kk=1. Consider alternating
optimization. Problem (3) can be divided into two subproblems

minimize
{Uk,bk}Kk=1

K∑
k=1

tk∑
i=tk−1+1

ε(xi,Uk,bk) (4)

and

minimize
{tk}K−1

k=1

K∑
k=1

tk∑
i=tk−1+1

ε(xi,Uk,bk) (5)

subject to 0 < t1 < t2 < .... < tK−1 < N.

This alternating optimization has some admirable advan-
tages: firstly, problem (4) has a closed-form solution; secondly,
while (5) is non-convex with integer variables, it can be solved
based on gradient descent and weighted local polynomial
regression.

A. Obtaining the Subspace Feature

We first focus on solving (4) with the given segmen-
tation index, that is fixing {tk}K−1k=1 to {t(n)k }

K−1
k=1 , and

updating {U(n+1)
k ,b

(n+1)
k }Kk=1 by solving (4). Denote the

objective function of (4) as J1({Uk,bk}Kk=1). If we set
the derivation of J1({Uk,bk}Kk=1) on bk as zero, that is
∂J1({Uk,bk}Kk=1)/∂bk = 0, we have



b
(n+1)
k =

1

tk − tk−1

tk∑
i=tk−1+1

xi (6)

Next, we consider {U(n+1)
k }Kk=1 with the given

{b(n+1)
k }Kk=1. If we restrict uk,j ∈ RD, j = 1, 2, ..., dk

to be unit orthonormal vectors, we have UT
kUk = I, where

I is a dk-by-dk identity matrix. So the residual function can
also be written as ε(xi,Uk,bk) = ||(I−UkU

T
k)(xi−bk )||22.

Given bk, minimizing ||(I−UkU
T
k)(xi−bk )||22 is equivalent

to maximizing ||UkU
T
k(xi − bk )||22. In this way, finding

unit orthonormal basis vectors uk,1, ...,uk,dk is equivalent
to finding the best rank-dk approximation UkU

T
k of the

covariance matrix Sk, where

Sk =
1

tk − tk−1

tk∑
i=tk−1+1

(xi − bk)(xi − bk)T

So, given {b(n+1)
k }Kk=1, problem (4) can be reformulated as

maximize
{{uk,j}

dk
j=1}Kk=1

K∑
k=1

dk∑
j=1

uT
k,jSkuk,j

The solution is given by taking the eigenvectors of Sk that
correspond to the dk largest eigenvalues.

B. Solving for the Segmentation Index using Weighted Local
Polynomial Approximation

We now obtain the segmentation index based on the
feature of the subspace, that is, fixing {Uk,bk}Kk=1 to
{U(n+1)

k ,b
(n+1)
k }Kk=1, and updating {t(n+1)

k }K−1k=1 by solving
(5).

Denote H ∈ RN×K as a residual matrix, where (i, k)th
entry given by Hik = ε(xi,Uk,bk). Define f(t) as the value
of
∑K
k=1

∑tk
i=tk−1+1Hik at t, where t = [t1, t2, ..., tK−1]T.

The function f(t) appears as staircase in each variable tk due
to the fact that tk’s take integer values, where the derivative
is zero almost everywhere. In addition, the noise and outlier
in dataset lead to a lot of local optimums in (5), which is
challenging to solve (5) by using gradient descent method
directly. To tackle these challenges, we adopt weighted local
polynomial approximation to compute the approximate gra-
dient of f(t). Its workflow is to build a function by point-
by-point fitting a simple model to a local subset of data to
describe the deterministic element of the variation in the data.
Denote fk(t) as the partial function of f(t) with fixed tj ,
j = 1, 2, ...,K − 1, j 6= k. The local polynomial fitting of
fk(t) at point tk is

min
θk

Q∑
q=−Q

(
fk(tk + q)−

M∑
m=0

θk,mq
m

)2

κb(q) (7)

where polynomial parameters θk = [θk,0, θk,1, ..., θk,M ]T, and
the polynomial approximation of fk(t) at tk is

∑M
m=0 θk,mq

m.
The parameter Q control the size of the local subset. The kernel

function κ(·) assigns weights to data points and it also has a
bandwidth b, which is usually set to be 2Q, to control the size
of the local neighborhood, κb(q) = 1

bκ
(
q
b

)
.

Note that if the kernel function is a constant, problem (7) be-
comes an original polynomial fitting around tk. Epanechnikov
kernel function is used in this paper

κ(x) =
D(D + 2)

2SD
(1− x21 − · · · − x2D)+

where D is the dimension of data, which is also the number of
the sensor, SD = 2π

D
2 /Γ (D2 ) is the area of the surface of the

D-dimensional unit ball and Γ is the Gamma function [9]. The
first-order fitting is needed for the gradient descent method, so
the polynomial order M is set to be 1 and θk,1 can be seen as
the gradient of the function fk(t) at point tk. Then, problem
(7) can be written as

min
θk,0,θk,1

Q∑
q=−Q

(fk(tk + q)− (θk,0 + θk,1q))
2

×
Γ (D2 )D(D + 2)

4π
D
2 b

(
1− |q

b
|2
)
+
.

The parameter tk, k = 1, ...,K − 1 are updated simultane-
ously according to

tn+1
k = tnk − bηθk,1c (8)

where η is a step size, and b·c denotes the rounding down
operation. Consider the constraint in (5), we sort the elements
of tn+1 in an increasing order after each updating of tn+1

k ,
k = 1, 2, ...,K − 1.

The proposed gradient descent algorithm based on the
weighted local polynomial approximation is likely to obtain
a locally optimal solution since problem (5) is non-convex,
but we can try different initial points to find the best local
minimum with minimal objective function value among local
optimal points.

IV. LOCALIZATION

A. Matching the Signal Subspace and Indoor Regions
The clustering results obtained from Section III are blind

to the region locations, and therefore, the subspace features
{Uk,bk} need to be associated with regions. We employ the
idea of WCL to estimate the region locations.The clustering
results obtained from Section III are blind to the region
locations, and therefore, the subspace features {Uk,bk} need
to be associated with regions. We employ the idea of WCL to
estimate the region locations.

Let oq ∈ R2, q = 1, ..., D be the position of sensors. Denote
Dk ⊂ R2 as the area for region k. For each data sample
xn = (xn,1, xn,2, ..., xn,D) in the mth subspace, the estimated
location of xn is zn =

∑Q
q=1 wn,qoq , where the weight

wn,q = 10(xn,q/20)∑Q
j=1 10(xn,j/20)

. Then, a majority vote is applied

to determine the region corresponding to the mth subspace.
Specifically, if most data samples are found to region k, i.e.,
zn ∈ Dk, then associate this mth subspace with region k.



B. Localization Schemes

1) Localization based on subspace classification: One
scheme is to complete the localization task based on integrated
segmentation and subspace clustering and subspace classifi-
cation. Specifically, once we collect new RSS measurement,
we explore subspace classification method to search the best
matching subspace feature, which has been obtained by in-
tegrated segmentation and subspace clustering, to the current
RSS measurement x. It is operated by comparing the similarity
between the online RSS measurement vector and the subspaces
to identify the subspace to which the online readings belong.
The clusters with the largest similarity values are selected as
the candidate clusters. Given a new coming RSS measurement
x, the nearest subspace to x is

k̂ = argmin
k∈{1,2,...,K}

||(I−Uk(UT
kUk)−1UT

k)(x− bk )||

2) Localization based on DNN classifier: Another scheme
is to use the clustering result of integrated segmentation and
subspace clustering to train a multi-layer perceptron neural
network and then use the network to predict the location the
new coming RSS measurement. The input of the model is
D RSS measurement form D sensors. The network contains
three hidden layers, each consisting of 32 nodes with the
rectified linear unit (ReLU) as the activation function. There
are K nodes in the output layer corresponding to K classes
with softmax as the activation function. The cross-entropy loss
function, which is calculated between the predicted category
probability output and the actual category.

V. EXPERIMENTS

A. Environment Configuration and Data Collection

We conduct experiments to test the proposed integrated
segmentation and subspace clustering with real-world datasets.
As shown in Fig. 1, a mobile device follows an specific route
to visit all the 10 non-overlapping regions (ranging from 3-by-
3m to 8-by-5m) without repetition in an office space area of
dimensions 30-by-16m (480m2) with 21 sensors. Meanwhile,
the mobile repeatedly transmits radio signals and only the RSS
of the signal emitted by the mobile is recorded. To evaluate
the generalization capability under a change of environment,
we separate the data collection in two periods ranging for 3
days. The data collected in the first day is used as Training
Dataset, and the data collected in the second and third day
is used as Test Dataset I and Test Dataset II respectively. The
environments are considered to be slightly different, since there
are people walking around and small furnitures can be moved.

B. Clustering Performance Evaluation

We compare the proposed integrated segmentation and sub-
space clustering method with the state-of-the-art clustering
approaches, including subspace clustering [5], K-means clus-

Table I: Clustering Performance Evaluation on Training
Dataset.

Metric K-
means

[6]

GMM
[8]

Spectral
Cluster-
ing [7]

Subspace
Cluster-
ing [5]

Proposed

Rε [%] 18.05 32.20 29.19 30.24 1.33

Table II: Localization result on Test Dataset I and II. Proposed
(subspace) is the localization scheme based on subspace match-
ing and Proposed (DNN) is the localization scheme based on
DNN classifier.

Type Method Test Dataset I Test Dataset II
ERC

[regions]
ERL

[meter]
ERC

[regions]
ERL

[meter]

Unsuper-
vised

Max-RSS 0.4740 1.4006 0.4802 1.0767
WCL [4] 0.5844 1.9035 0.5961 1.6663
Proposed
(subspace) 0.2352 0.4857 0.3462 0.7210

Proposed
(DNN) 0.2496 0.7207 0.3663 1.0011

Super-
vised

KNN [10] 0.2804 0.8096 0.3781 0.9200
SVM [11] 0.3620 0.8131 0.3751 0.7019

tering [6], spectral clustering [7] and GMM [8]. We define the
average clustering error rate is defined as

Rε = (1− 1

N

N∑
i=1

δ(mi,map(m̂i)))× 100%

where xi is collected in the mith region and grouped to
the m̂ith cluster, δ(x, y) = 1 if x = y, and δ(x, y) = 0
otherwise, and map(qi) is the best mapping function that
permutes clustering labels to match the ground truth labels.
As shown in Table. I, the proposed method shows the lowest
clustering error percentage 1.33%.

C. Localization Performance Evaluation

We compare the localization performance with the max-
RSS and WCL [4] schemes. In addition, for performance
benchmarking, we also evaluate the performance of KNN [10]
and SVM [11], which are supervised learning methods that
require labels.

1) Region classification error: The region classification error
of the ith sample is Cmi,m̂i

if xi is collected in the mith
region and predicted to be collected in the m̂ith region, where
Cmi,m̂i

equals to the normalized distance of the shortest path
connecting region mi and region m̂j in which there is a direct
"path" between region mi and region mj if the two regions
are not separated by concrete walls according to the layout in
Fig. 1. The average length of such direct paths is normalized to
1 in the region classification error metric. The average region
classification error is ERC = 1

N

∑N
i=1 Cmi,m̂i

.
2) Region localization error: The region localization error of

the ith sample is ei = ‖pmi
− pm̂i

‖2 if xi is collected in the
mith region and predicted to be collected in the m̂ith region,
where pk is the center position of the kth region. The average
region localization error is ERL = 1

N

∑N
i=1 ei.

The parameters of baseline methods were determined and
tuned using a ten-fold cross validation. For KNN, the optimal
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Figure 3: Accumulative region classification error and region localization error on Test Dataset I and Test Dataset II.

number of neighbors was found to be 8. A Gaussian kernel
was used for SVM. The neighbor size Q in proposed clustering
method is set to be 10, and the step size η in proposed gradient
descent method is set to be 0.1. The subspace dimension dk is
chosen from 1 to 3 according to the number of sensors located
in the region as shown in Fig. 1.

As shown in Table. II, our proposed subspace-based local-
ization scheme outperforms all of the state-of-arts. For Test
Dataset I, the proposed subspace-based localization scheme
has the smallest average region classification localization error
0.2352m and region localization error 0.4857 than the super-
vised method, which implies that the RSS data collected from
the same region locate in a same subspace and the proposed
clustering model (3) can effectively extract the subspace fea-
ture from the dataset. Although the data collected in different
regions cross together and even the supervised classifiers, e.g.,
KNN and SVM, do not show good partition performance, the
proposed subspace-based scheme can group the data according
to the subspace feature. In addition, the traditional calibration-
free localization methods, e.g., Max-RSS and WCL, show large
localization error, because they are not suit for the indoor
complicated environment with the irregular sensor installment.
Finally, the proposed localization schemes also outperform the
existing supervised and unsupervised methods with the time
going. As we all know, the localization error of RSS-based
method will become larger and larger without any environment
adaptation. Because Test Dataset II is collected later than the
Test Dataset I, the error of Test Dataset II is larger than the
error of Test Dataset I. Although the performance of all the
methods become worse, the proposed scheme still shows the
lowest localization error.

Fig. 3 shows the accumulative region classification error
and region localization error of testing datasets. For Test
Dataset I, almost 80% of data are classified correctly based on
the proposed localization scheme, which is better than Max-
RSS and WCL. In addition, the region classification error of
the proposed subspace-based scheme is 0.0144 smaller than
the region classification error of the proposed DNN-based
scheme, but the proposed subspace-based scheme shows 0.235
smaller region localization error than the proposed DNN-based
scheme. This implies that the wrong prediction region of the
proposed subspace-based scheme is always near to the true
region in geometry.

VI. CONCLUSION

This paper presented an integrated segmentation and sub-
space clustering method that exploits both the sequential data
structure from the blind data collection process and the signal
subspace structure due to the partition of the regions. The core
idea is to learn the subspace feature from the RSS measurement
under the prior knowledge of the sequential data structure.
First, an affine subspace clustering model for sequential data is
proposed, and a two-step alternating algorithm is designed to
obtain the subspace feature and clustering label simultaneously.
Then, with the location labels recovered from the proposed
clustering method, a subspace classifier and a DNN-based
classifier are built to localize the target to the regions. Finally,
numerical results demonstrated that the proposed localization
schemes show lower region error than the existing state-of-arts.
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