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Abstract—This paper studies the problem of predicting the
spectrum efficiency (SE) for massive multiple-input multiple-
output (MIMO) empowered 5G networks based on the reference
signal received power (RSRP) collected from the drive test (DT).
This problem is challenging because there is no precise model
between the RSRP and the SE. The SE not only depends on
the RSRP, which only captures the statistic of the channel,
but also the beamforming strategy of the serving base station
(BS) and the interference from the neighboring cells, which are
not measured at the 5G client. This paper adopts a model-
assisted data-driven approach to develop a machine learning
model for the SE prediction. Specifically, a joint interference
and SE prediction network is built, demonstrating prediction
improvement over pure data-driven neural networks. In addition,
a classification-assisted SE prediction network is constructed,
which substantially reduces the prediction error at the low SE
regime with marginally compromising the total prediction error.
It is found that the model-assisted approach generally enhances
the SE prediction accuracy by 2% approximately over a purely
data-driven approach.

I. INTRODUCTION

5G new radio (NR) wireless communication networks
have provided orders of magnitude performance improvements
with the densification of networks and massive multiple-input
multiple-output (MIMO) deployment. Under massive MIMO,
the base stations (BSs) operate sophisticated beamforming
algorithms and resource allocation strategies to serve a massive
amount of users. As a result, it becomes incredibly challenging
for the operator to optimize the network parameters, such as
tuning the tilting angles of the antenna panels at the BSs, for
improving the spectrum efficiency (SE).

One promising strategy to optimize the 5G network under
active research is to divide the network optimization into two
parts: First, we develop a model to map the network parameters
to the channel quality at each geo-location. Second, we build a
model to predict the SE at each location based on the estimated
channel quality. As a result, the operator can optimize the
network parameters based on the predicted SE in the serving
area. This paper focuses on the second part, and it aims at
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Figure 1: Illustration of the drive testing for 5G NR networks
with densely deployed BSs and massive MIMO.

building a machine learning model to predict the SE based on
the reference signal received power (RSRP).

In the literature, there have been prior works investigating
the prediction of long-term channel statistics (such as RSRP
and channel state information (CSI) statistics) for real-world
cellular networks. For instance, the authors in [1]–[3] studied
the prediction of RSRP in LTE systems, indoor Wi-Fi net-
works, and vehicle networks, respectively. The studies in [4]–
[6] considered the prediction of MIMO CSI by using partially
measured information, and those in [7]–[9] considered the
prediction of inter-cell interference. Besides, several attempts
have been made to explore the relationship between SE and
system parameters in massive MIMO networks (see, e.g., [10]–
[13]). While these preliminary results modeled or predicted
the SE in ideal scenarios, it is still a largely uncharted but
challenging problem to develop a model to predict the SE
based on the long-term channel statistics in 5G NR networks.

The SE prediction based on channel statistics faces a number
of technical challenges. First, only partial data is available.
In our data collection campaign, only the RSRPs of selected
CSI beams measured at selected antennas are available due
to practical constraints on the measurement device. Second,
some essential information is missing. For example, it was too
difficult to collect direct data to measure inter-cell interference.
Besides, in practice, the datasets are built at different dates and
locations statistically non-identical.



This paper develops three techniques to tackle the above
mentioned challenges and a series of machine learning models
to demonstrate performance enhancement. First, we propose a
location-based feature smoothing technique to ease the training
of the neural network (NN). Based on this, we develop a joint
interference and SE prediction network to enhance the SE
prediction via estimating the interference as an intermediate
step, bringing down the SE prediction error from 17% to
14.9%. Third, we build a classification-assisted SE prediction
network, which reduces the prediction error at the low SE
regime from 74% to 28%, slightly compromising the total SE
prediction error.

II. SYSTEM MODEL

A. SE Model for 5G MIMO Networks

Consider a cellular network with Q + 1 BSs, where BS
q = 0 only serves a DT user and BS q = 1, 2, . . . , Q each
serves multiple users as shown in Fig. 1. Each BS has Nt
antennas, and the DT user has Nr antennas. The downlink
channel from the qth BS to the DT user is given by Hq ∈
CNr×Nt . Let x̃q ∈ Cdq denotes the message transmitted at
the qth BS, q = 0, 1, . . . , Q, where dq are the numbers of
data streams and E{x̃qx̃H

q } = I. Let Vq ∈ CNt×dq denotes the
transmit precoding matrix at the qth BS, where tr{VqV

H
q } ≤ P

with P denoting the total power constraint and tr(·) denoting
the trace. The received signal at the DT user is given by

y = H0V0x̃0 +

Q∑
q=1

HqVqx̃q + n

where n ∼ CN (0, σ2INr) is the additive complex Gaussian
noise.

While the transmission mechanism is complicated in an
actual 5G network, we only focus on the first-order behavior
of the transmission system and employ a simple de-correlation
model to assist the design of the NN. Specifically, consider that
the DT user employs a zero-forcing de-correlator and uses ui
to extract the ith data stream.1 As a result, the received signal-
to-interference-and-noise ratio (SINR) of the ith data stream
is given by

γi =
||uH

i H0v0,i||2

σ2 +
∑Q
q=1 ‖uH

i HqVq‖2
(1)

where v0,i is the ith column of the precoding matrix V0 for
the DT user and ‖ · ‖ denotes the Euclidean norm. Thus, the
instantaneous downlink SE for the DT user can be roughly
modeled as

s({Hq}) =

d0∑
i=1

log2 (1 + γi) (2)

where d0 denotes the transmission rank or the number of data
streams transmitted.

1In the low signal-to-noise ratio (SNR) regime, the BS may prefer to
transmit only a single data stream, where zero-forcing can be identical to
match filtering. At high SNR, zero-forcing is optimal.

The BS is believed to use the “best effort” to design the
precoding matrix {Vq} based on the instantaneous information
measured and reported by the DT user, such as RSRP, channel
quality information (CQI), and rank indicator (RI), as well
as the transmission history, e.g., due to the implementation
of the hybrid automatic repeat request (HARQ) scheme [14].
The goal of the paper is to predict the average downlink SE
of the DT user s̄ , E{s({Hq})} based on the statistical
information, RSRP, specified in the following subsection,
where the expectation is taken over the small-scale fading of
the MIMO channel at the order of hundreds of milliseconds.

B. Measurement Model for RSRP

Denote Z ∈ CNt×Nt as the discrete Fourier transform (DFT)
matrix with its ith column zi being the ith CSI beam. Consider
to partition the index set {1, 2, . . . , Nt} into M = Nt/4 subsets
C1, C2, . . . , CM .2 Define z̃i , 1

4

∑
j∈Ci zj as the beamforming

vector for the synchronization signal (SS). It is clear that the
beamwidth of the SS is wider than that of the CSI beam.

The CSI-RSRP measured at the jth receive antenna for the
ith CSI beam transmitted by the qth BS is defined as the
average received signal power ḡ[j]

q,i = E{||eT
jHqzi||2}, where

the superscript T denotes the transpose, ej is a vector of
zeros except for the jth entry being 1, and the expectation
E{·} is taken over the small-scale fading. Similarly, the SS-
RSRP measured at the jth receive antenna for the ith CSI beam
transmitted by the qth BS is defined as g̃[j]

q,i = E{||eT
jHqz̃i||2}.

However, due to practical constraints, only partial informa-
tion of the RSRPs is available. Let {ḡ[j]

q,(i)} be the ordered

CSI-RSRP, such that ḡ[j]
q,(1) ≥ ḡ

[j]
q,(2) ≥ · · · , and {g̃[j]

q,(i)} be
the ordered SS-RSRP. For the CSI-RSRP measurement related
to the serving cell q = 0, only the Ns = 8 strongest CSI-
RSRPs ḡ[j]

q,(1), ḡ
[j]
q,(2), . . . , ḡ

[j]
q,(Ns) are available. For the RSRP

measurement related to the neighbor cells, only the strongest
SS-RSRP g̃

[j]
q,(1) is recoded, which is denoted as g̃max

q,(1), and
the neighboured Q = 6 cells are considered. Furthermore,
only two receive antennas j = 1, 2 record the CSI-RSRP. So,
our problem is to predict SE based on the RSRP information
{ḡ[1]

0,(i), ḡ
[2]
0,(i)}

Ns
i=1, {g̃max

q,(1)}
Q
q=1.

C. Data Collection

We collect the RSRPs of the CSI beams of the serving
cell and the RSRPs of the SS from neighbor cells by using
a 5G phone. An auxiliary equipment is used to measure the
SE, and the SE is defined as the instantaneous media access
control (MAC) layer throughput over one second divided by
the number of the resource blocks (RBs) used.

In addition, to assist the development and training of our NN
model, a massive amount of auxiliary data is collected by using
the equipment mentioned above, including the date, time, and
GPS location of the data sample collected, average RI, down-
link initial block error rate (BLER), and average modulation
and coding scheme (MCS). The data density typically ranges
from 1 to 5 samples per second, depending on the attributes

2In practice, Nt is a multiple of 4.
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Figure 2: The SE distribution of the three datasets. The
statistics are non-identical.

of the data. For example, RI and MCS are recorded once per
second, and RSRPs are updated 3-5 times per second.

The data collection campaign was conducted in both
Chengdu and Shenzhen, two major cities in China. Three
datasets are formed:
• Dataset 1: Collected from April to October 2020 in

Chengdu with 87-hour duration and 142 km travel dis-
tance;

• Dataset 2: Collected in December 2020 in Chengdu with
19-hour duration and 27 km travel distance, where the
network was operated under different antenna configura-
tions from Dataset 1;

• Dataset 3: Collected from August to September 2020
in Shenzhen with 12-hour duration and 19 km travel
distance;

Statistics analysis shown in Fig. 2 reveals two challenges:
First, the statistics are quite different across datasets, which
makes it difficult to generalize the NN model for the SE
prediction to a new wireless network (e.g., Dataset 2) at
a new geographical location (e.g., Dataset 3). Second, the
distribution of the SE is highly uneven, and there is little data
in the low SE regime, which makes it challenging to make
an accurate prediction when the SE is small. We will address
these challenges in Sections IV and V, respectively.

III. DESIGN OF A PRELIMINARY NN MODEL

A. Data Preprocessing

The data collected is noisy and contains a large amount
of missing entries due to two factors: First, the timestamps
of different features reported by the service are misaligned.
For example, there can be a 500-millisecond lag between the
SE data and the nearest RSRP or CQI record. Second, the
DT user that collects the data is a vehicle moving at variable
speed in real traffic. In addition, there is a significant amount of
"outliers" due to transmitting small packets for hand-shaking
from higher layers.

Based on these observations, we perform data interpolation,
outlier removal, and normalization as follows.

• Interpolation: As different data entries are recorded asyn-
chronously, we perform linear interpolation with respect
to time to fill in the missing values of each feature.

• Outlier removal: We remove data with strong channel
quality but low SE or initial BLER. Such a sample is
probably due to small packet transmission from the higher
layer, but this does not represent the achievable SE of the
system. Specifically, we remove data that has CSI-RSRP
above −60 dBm, SE lower than 100Mbps/RB or higher
than 3200Mbps/RB, and initial BLER lower than 5%.

• Normalization: Each feature is normalized to the range
[0, 1] to speed up NN learning and ensure that each
feature contributes approximately proportionately to the
NN. Specifically, denote Mj and mj , respectively, as
the maximum and minimum values of the jth feature in
the training set. Then, a data sample x of feature j is
normalized as x̄ =

x−mj

Mj−mj
.

B. Location-based Feature Smoothing for Training

To further prevent the NN over-fitting to the noise, we pro-
pose to smooth the training data. Note that user performance in
a cellular network is significantly correlated with the location
since the signal propagation depends on the local environment.
Therefore, the feature smoothing scheme should exploit the SE
performance’s time and spatial correlation. With such a goal,
we design a 1D filter as follows.

Let oi be the cumulated travel distance of the DT user when
the ith data sample xi is collected, where xi is the interpolated
feature vector. Note that the temporal adjacency is also cap-
tured in the sequence oi, since the vehicle speed is bounded.
For a data sample x collected at the cumulated travel distance
o, the smoothed version x̂ is computed based on the weighted
sum over a subset of sample indices Ω = {k : |o− ok| ≤ ∆}
collected in its ∆-neighborhood:

x̂ =

∑
k∈Ω wkxk∑
k∈Ω wk

where the weights wk = e−
|o−ok|

∆/2 are determined by the
difference of the travel distance. It is clear that a high weight
implies closeness in both time and space.

It is found that the location-based feature smoothing for the
training data does improve the SE prediction performance in
the test set, as seen in Table I.

C. A Preliminary NN Model

We adopt a multi-layer perceptron (MLP) NN to serve as a
benchmark to build a preliminary NN, namely SENet, shown
in Fig. 3. As mentioned in Section II-B, the input of the model
is 22 RSRPs {ḡ[1]

0,(i), ḡ
[2]
0,(i)}

8
i=1, {g̃max

q,(1)}
6
q=1. There are three

hidden layers, each consisting of 32 nodes with the rectified
linear unit (ReLU) as the activation function.

The loss function is designed as a density-weighted relative
loss to address the unevenness of the training data. Specifically,
the loss function is defined as:

LSENet =
∑
i

wi|
ỹi − yi
yi
|
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Figure 3: Architecture of the SENet.

where ỹi is the predicted SE of the ith sample, and yi is the
SE of the ith sample obtained in Section II-C.

The weights for each sample are adjusted according
to the density of the SE, wi = 1

f̂(yi;h,{yi}ni=1)
, where

f̂(yi;h, {yi}ni=1) is the empirical density function in the train-
ing set. Here, we adopt the kernel density estimator to construct
the density function as f̂(y;h, {yi}ni=1) := 1

nh

∑n
i=1K(y−yih ),

where K(·) is the Gaussian kernel function with smoothing
parameter h and n is the total number of the sample.

The parameters of the model are set in Section VI. The
performance is evaluated using mean absolute percentage error
(MAPE) e = E{|ỹ − y|/|y|}, and we are interested in the
accuracy on different SE regimes, i.e., the expectation E{·} is
conditioned on different SE criteria.

Table I: MAPE[%] of the SE prediction on the test sets for the
SENet under different values of W .

W [meter] 25 30 35 40 45 50 55 60

Dataset 2 19.0 18.2 18.0 17.0 17.6 18.3 19.2 20.2
Dataset 3 33.6 32.4 31.2 30.7 32.2 33.3 34.2 35.1

Table II: MAPE[%] of the SE prediction on the test sets for
the SENet with W = 40 under different SE regimes.

SE regimes Low Medium-low Medium High Total

Dataset 2 71.0 18.0 12.0 13.0 17.0
Dataset 3 72.0 24.0 28.0 32.0 30.7

Table I summarizes the MAPE of the SE prediction for the
MLP model under different values of W for feature smoothing.
First, feature smoothing on the training data reduces prediction
errors, and W = 40 meters yields the best performance on
both test sets. Second, although the model is trained using the
density-weighted relative loss to mitigate the unbalance of the
training data, the MLP model still suffers inferior performance
in the low SE regime. As shown in Table II, we divide the
whole SE region into four regimes, namely low, medium-low,
medium, and high regimes, by three partition indices 1000,
1500, and 2500. The MAPEs of the low SE regime of Dataset
2 and Dataset 3 are 71% and 72% separately, larger than the
other SE regimes’ error. In the remaining part of the paper,
we study two techniques to improve both the overall accuracy
and the accuracy of the low SE regime.
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Figure 4: Architecture of the ISENet.

IV. INTERFERENCE MODEL AIDED SE PREDICTION

It is well-known that an MLP network with more than two
hidden layers and sufficient neurons with non-linear activations
can approximate any function. This section aims to improve
the NN structure by exploiting the mathematical structure of
the transmission model.

A. Joint Interference and SE Prediction

As shown in the transmission model for the 5G MIMO net-
works in Section II (see. (1) and (2)), the downlink SE depends
on a number of factors, including the precoding matrices Vq ,
the transmission rank d0, and the SINR γi. Although there is
a clear relationship among the interference, SINR, and the SE
as in (1) and (2), we cannot obtain or predict the precoding
matrices, and the transmission rank as instantaneous channel
information is not available. By contrast, it is relatively easier
to predict the average interference. Specifically, one may use
the SS-RSRP from adjacent cells as an essential feature to
predict the average interference level, which may help predict
SE.

Towards this end, there are still two difficulties to be
addressed. First, there is no auxiliary data that directly captures
the interference in our dataset. As a result, we need to define
a proxy that can be easily computed from the auxiliary data
for the interference level. Second, even with knowledge of the
interference level, we need to train a model that maps the
interference level to the SE.

We build a joint interference and SE prediction network to
tackle the above two challenges, namely ISENet, as shown in
Fig. 4. In particular, the ISENet combines the SENet with a
new interference prediction network that aims to predict the
total interference (plus background noise), denoted by g that
corresponds to the sum of σ2 +

∑Q
q=1 ‖uH

i HqVq‖2 in (1)
from all the interference beams. The interference prediction
network uses the CSI-RSRP and SS-RSRP as input, and the
manually calculated interference value g is adopted as the
training label, where g is calculated based on MCS and CSI-
RSRP. As mentioned above, MCS comes from a parameter
table that is preset by the BS manufacturer, and CSI-RSRP is
measured by the 5G phone. The predicted interference value is
then taken together with RSRP as input into the SE prediction
network to estimate the SE. More specifically, for both the
interference prediction network and the SE prediction network,
there are three fully connected (FC) layers. Each activation
function of the three FC layers is the ReLU function, and the



Table III: The MAPE[%] results before and after adding the
low SE classification feature under Dataset 2.

Low M-low Medium High Total

ISENet 74.0 22.0 13.0 14.0 14.9

cISENet 10.8 10.2 9.9 9.7 10.2

activation function of the output layer is the linear function.
Moreover, the loss function of ISENet is

LISENet = α
∑
i

wi|
ỹi − yi
yi
|+ (1− α)

∑
i

wi|
g̃i − gi
gi
|

where g̃i denotes the predicted interference of the ith sample,
gi denotes the interference of the ith sample which is obtained
in Section IV-B, and α is the proportional control factor. Here,
0 ≤ α < 0.5 means that the loss of interference is more
important than that of SE, and 0.5 < α ≤ 1 means the
opposite.

B. Generating the Proxy Interference Data

In realistic 5G NR networks, the actual interference value
caused by neighboring cells is difficult to obtain, thus we use a
mathematical model to manually get the estimated interference
value as follows to tackle this issue. In particular, based on the
SINR formula in (1), the interference gi of the ith timestamp
for DT is expressed as

gi =
P

(i)
r

γ̃i

where P (i)
r denotes the total received signal power of the ith

sample and γ̃i denotes the SINR of the ith timestamp for
DT, which is different from the received SINR of the ith data
stream γi. We approximate P (i)

r according to the CSI-RSRP
from the primary cell as

P (i)
r =

1

η2

η∑
j=1

1

2
(ḡ

[1]
0,(j) + ḡ

[2]
0,(j)) (3)

where η denotes the RI measured by the DT equipment that
indicates the number of independent transmission layers d0

used at the transmitter, or the number of independent channels
between the transmitter and receivers. Notice that in (3), we
choose the η strongest CSI-RSRP beam values, as it is highly
likely the BS may choose to transmit the η data streams in
the subspace spanned by the strongest η beams. Furthermore,
we divide the average power of the η strongest beams by an
additional factor of η, in order to capture the potential power
allocation among the η transmission layers.

Next, we obtain the SINR value γ̃i from the collected MCS
based on the mapping table between the SINR and MCS
values. Then convert P (i)

r in dBm, and the mathematical model
of gi is given by

gi[dBm] = P (i)
r [dBm]− γ̃i[dB].
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Figure 5: Architecture of the CISENet.

Therefore, the interference value is successfully estimated for
the implementation of ISENet.

V. CLASSIFICATION-AIDED SE PREDICTION

The MAPE in the low SE regime can be reduced by adding
a low SE classification prediction NN into the ISENet. The
samples in the low SE regime are limited and noisy, which
inspires the ISENet to pay more attention to the low SE regime.
Notice that the ISENet model is used as a baseline model, and
the classification-aided SE prediction NN, namely cISENet,
is further designed to seek a better design structure for SE
prediction model. Therefore, in the cISENet we design the NN
same as that of ISENet, but the low SE classification feature
is also utilized as a partial input of the total NN.

As shown in Table III, the MAPE of low SE goes from
74.0% to 10.8% after adding the low SE classification feature
as the input of the ISENet, which is a significant improvement
in our application.

Motivated by this, we present the new model as follows.
First, we adopt the same structure as the SENet except for
the output layer to design the low SE classification NN. There
are two nodes in the output layer corresponding to two classes
with softmax as the activation function. The cross-entropy loss
function, which is calculated between the predicted category
probability output and the actual category, is designed as
follows:

LC = −
∑
i

wi[ci × log(pi) + (1− ci)× log(1− pi)]

where ci is the low SE classification label of the ith sample.
If the ith sample is in the low SE regime, ci = 1, otherwise
ci = 0. pi and 1 − pi are the output of the SE classification
NN.

As shown in Fig. 5, the SE prediction model, namely
CISENet, takes the output of the low SE classification NN ci
and the predicted interference gi together with RSRP as input
to estimate SE. Combining the ISENet’s loss and the low SE
classification loss, the loss function of the CISENet is set as

LCISENet = LISENet + LC.

VI. EXPERIMENT RESULTS

This section presents experimental results to evaluate the
performance of our proposed the SENet, ISENet, and CISENet,
by using the three datasets mentioned in Section II-C. In the



Table IV: The comparison of the three proposed models.

SE regime Low SE Medium-low SE Medium SE High SE Total

SE range[Mbps/RB] 0-1000 1000-1500 1500-2500 2500-3200 0-3200

MAPE[%] or SDAPE[%] MAPE SDAPE MAPE SDAPE MAPE SDAPE MAPE SDAPE MAPE SDAPE

Dataset 2
SENet 71.0 15.9 18.0 14.2 12.0 15.1 13.0 13.1 17.0 15.0
ISENet 74.0 14.1 22.0 13.9 13.0 14.8 13.6 12.2 14.9 16.7

CISENet 28.0 15.8 25.0 14.4 17.0 15.6 16.0 13.0 19.3 16.3

Dataset 3
SENet 72.0 21.2 24.0 19.3 28.0 18.4 32.0 18.8 30.7 20.9
ISENet 78.0 21.9 26.0 19.8 20.0 18.6 19.0 19.1 28.8 21.4

CISENet 32.0 21.4 31.0 19.5 36.0 18.4 38.0 18.9 31.1 21.0

experiment, Dataset 2 (after system parameters reconfigured) is
used as the test dataset to evaluate the robustness of the models
if we change the antenna configurations. Dataset 3 (collected
from a different city scheme) is used to evaluate the portability
performance of the models under different areas. The model
is trained using an Adam optimizer with an initial learning
rate η0 = 0.001, batch size 64, and fixed decay rate 0.9. The
proportional control factor α = 0.8, and the number of training
epochs is 100. Our models are initialized with randomized
weights.

Table IV shows the performance of SE prediction in terms
of MAPE e and standard deviation of the absolute percentage
error (SDAPE) σe =

√
E{(|ỹ − y|/|y| − e)2}, which are

obtained by averaging over 50 tests. First, consider the case
with Dataset 2. It is observed that the ISENet achieves the
MAPE of 14.9%, which is 2.1% lower than that by the SENet.
This shows that by exploiting the predicted interference based
on the mathematical structure of wireless transmission models,
the ISENet driven by both data and model has a stronger
generalization ability and thus leads to better SE prediction
capability than the pure data-driven SENet. It is also observed
that while the SENet and ISENet outperform the CISENet in
terms of the total prediction errors, the CISENet leads to a
much lower prediction error (MAPE of 28%) in the low SE
regime than that of 71% in SENet and 74% in ISENet. This
indicates the value of low SE classification NN in reducing the
prediction error at the SE regime with slightly compromised
overall SE prediction performance. Second, it is observed that
the performance of the three models based on Dataset 3 is
worse than that based on Dataset 2, which motivates us to
do more research in the future to improve the portability
performance of our models.

VII. CONCLUSION

In this paper, we adopted a model-assisted data-driven
approach to building a deep neural networks (DNN) model
to predict the SE in a 5G NR network based on 5G phone
measurement statistic RSRP and the auxiliary equipment mea-
surement statistics, including MCS, SE, RI, and so on. The
challenge to address is that the SE depends on a lot of hidden
factors that are not directly captured by the CSI data available.
To circumvent the difficulty, we developed a location-weighted
averaging approach to de-noise the measurement data and then

designed a DNN architecture trained to predict the interference
with noise and the SE jointly. It is found that the ultimate
prediction accuracy on SE can be improved by using the
predicted interference as the NN input. This is substantiated by
the massive drive testing data collected in a real-world 5G NR
network at Chengdu, China. The training and testing data are
collected at different periods with different network parameter
configurations. An overall prediction error of 14.9% on the SE
is achieved.
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